Errata Sheet

(September 2015)

Fundamentals of Radiation Materials Science: Metals and Alloys, $1^{\text {st }}$ Edition

Page Line

Chapter 1

73 from bottom
10 Figure 1.5a
Figure 1.5b
11 Eq. for Q
13 Eq. after (1.26)
$16 \quad$ Fig. 1.7
18

19
19
21
21

18 line below Eq. (1.45)
Eq. (1.45)

Eq. (1.46)
5 lines from bottom of page
first line
Eq. after (1.52)
lines 9 and 10 after Eq. (1.60)
$7^{\text {th }}$ from bottom
Table 1.3
Screened Coulomb
Inverse square
Eq. (1.61)
Eq. above Eq. (1.64)
line above Eq. (1.69)
Eq. (1.69)
expression below (1.82)

Eq. (1.92)
Eq. (1.96)
Eq. (1.102)
Eq. (1.108) \& (1.109)
line 4
change " $\stackrel{V}{T}=0$ " to " $\hat{T}=\gamma E_{i}$ ".
variable on ordinate should be " σ_{s} ", variable on abscissa should be " ϕ ".
variable on ordinate should be " σ_{s} ", units or ordinate should be "barns/steradian", variable on abscissa should be " ϕ ".
As written, the equation, the left hand side should be " $-Q$ "
power on " $\left(E_{i} E_{m}^{\prime}\right)$ " term should be " $1 / 2$ ".
Change "T" to " T_{ℓ} ".
Change to $V(r)=k_{e} \frac{\varepsilon^{2}}{r}$
change to "where $k_{e}=\frac{1}{4 \pi \varepsilon_{0}}$ is the Coulomb constant, ε_{0} is the
electric constant, ε is a single unit electronic charge and $\varepsilon^{2}=1.44$ eV-nm".
second inequality should be " $r \leq r_{0}$ ".
change "van de Waals" to "van der Waals".
remove " a " before "little".
limit should be " $r \rightarrow 0$ ".
change " ϕ " to " V ".
insert space before " $M 2$ ".
change to "Light ions $r<a_{0}$ ".
change " E_{r} " to " E_{R} ".
change " M^{l} " to " M_{l} ".
" v_{ℓ} " on LHS of first Eq. should be " v_{1} ".
insert ", ρ,: after "approach".
replace " r " with " ρ " in in two places in Eq. (1.69).
After first equality in line, insert "(using the absolute value of the derivative to maintain $\frac{d b}{d \phi}$ as a positive value)".
move " $1 / 2$ " to inside of square bracket.
change argument of first " $\sin ^{-1}$ " term to " $\frac{b_{0}}{2 b^{2} c}$ ".
change " $E_{i} \gamma$ " to " γE_{i} ".
change " $\varepsilon^{2 \text { " }}$ to " $e^{2 "}$ in all three instances of use.
replace "for the" with "for the same value of E_{i} and for".
$40 \quad 5^{\text {th }}$ line from bottom change "MeV" to "MV"

45 pph 3, last line
change " $d E / d x=N S(E)$ " to " $-d E / d x=N S(E)$ ".
replace " $\frac{1}{N} \sigma$ " with " $\frac{1}{N \sigma}$ ".
Caption should read: Reduced differential cross section calculated from the Thomas-Fermi potential. Abcissa is $\in=t^{1 / 2} / \sin \phi / 2$. The thick solid line ranging over $10^{-3}<\epsilon<10$ is from Eq. (1.141). The thin solid lines at left and right and the horizontal line in the middle are calculated using the power law cross section, Eq. (1.144) (from [15]).
49 Eq. (1.145)
50 Eq. (1.146)
$50 \quad$ Fig. 1.18
51 Fig. 1.19
51 Fig. 1.20
52 line 2
53 second line above Eq. (1.160)

53 line below Eq. (1.160)
55 line below Eq. (1.169)
55
57 Third line from
end of section 1.3.1
Second line from
end of section 1.3.1
57 Eq. (1.182)
58 Table 1.7
Low E general
Expression
Thomas-Fermi
Screening
Expression for K
In T-F screening
58
Eq. (1.184)
64 Example 1.3
lines 5 and 7
66 Nomenclature
67 Nomenclature

70 Problem 1.15 b)
change " $\sigma(E, T)$ " to " $\sigma\left(E_{i}, T\right)$ ".
change " $\sigma(E, T)$ " to " $\sigma\left(E_{i}, T\right)$ ".
Change to $S_{n}{ }^{0} \sim 0.327$
Change Eq. ref. in caption to Eq. (1.167).
Change Eq. ref. in caption to Eq. (1.168).
indent paragraph beginning with "Two approximations....".
change to "using a Thomas-Fermi screening function, and expanding..."
change to "where $f(r / a)=a / r$.
change "cross section" to "power".
replace " $S_{e}(E)$ " with " $\left(\frac{d E}{d x}\right)_{e}$ ".
" k 'si" should have units of "eV ${ }^{1 / 2} \mathrm{~cm}^{2} "$.
change "stopping powers" to "energy loss rates"
last equality should be " $-k E^{1 / 2,}$.
change "stopping powers" to "energy loss rates" in title and subheadings.
insert " N " in numerator
insert " N " in numerator
change units to " $\mathrm{eV} \mathrm{cm}{ }^{2 "}$.
replace " $S_{T}(E)$ " with " $\left(\frac{d E}{d x}\right)_{T}$ ".
change equation references to "Eq. (1.206)" and "Eq (1.207)".
$k_{e} \quad$ Coulomb constant
$\varepsilon \quad$ unit electronic charge
$\varepsilon_{0} \quad$ electric constant
change to " $S_{e}(E)=k^{\prime} E^{1 / 2 "}$ and " k ' $=2 \times 10^{-16} \mathrm{eV}^{1 / 2} \mathrm{~cm}^{2}$."

Chapter 2

75
76
point \#2
line below Eq. (2.8) change " $\mathrm{d} \varepsilon / \mathrm{dT}$ " to " $\mathrm{d} \varepsilon / \mathrm{T}$ ".

Fig. 2.3
78

94 line below Eq. (2.71)
95 line above Eq. (2.77)
95 line above Eq. (2.79) 96 line 8 under section heading "Replacement Collisions"
100 Table 2.3a title

100 Table 2.3a first entry in "Face-centered cubic" column

100 Table 2.3a third entry
in "Face-centered cubic" column

101 Eq. (2.92)
104 Eq. (2.102)
first line
$2^{\text {nd }}$ and $4^{\text {th }}$ line from bottom of second to last paragraph
First line below Eq. (2.55) $5^{\text {th }}$ line from bottom check on Eq. (2.65) line 7 line below Eq. (2.71) Table 2.3a title

$$
\frac{A\left(D^{110}\right)^{2}}{2 B^{2}} \exp \left(-\frac{D^{110}}{4 B}\right)^{\uparrow}
$$

$$
\left(\frac{6}{19}\right)^{1 / 2} \frac{A\left(D^{110}\right)^{2}}{B^{2}} \exp \left(-\frac{D^{110}}{2 B}\left(\frac{19}{12}\right)^{1 / 2}\right)^{\uparrow}
$$

equation should read " $V_{c h}(r)=k r^{2}$ ".
equation should read $T \frac{\mathrm{~d} v}{\mathrm{~d} T}=\ldots \ldots$.
change "into Eq. (2.82)" to "into Eq. (2.102)".
insert " σ_{γ} " after second equality.
limits of integration should be: " E " for lower limit and " \hat{E} " for upper limit.
first and third terms in square brackets should be " $2 E^{2}{ }_{d}$ ". change to "Eq. (2.1)".
change "ions $/ \mathrm{cm}^{2}$ " to "ions $/ \mathrm{cm}^{2}$-s".
unit should be $\frac{\text { displacements }}{\mathrm{n} / \mathrm{cm}^{2}}$.
" ε " should be " ε_{T} ".
units on flux are " $\mathrm{n} / \mathrm{cm}^{2} \mathrm{~s}$ ".
change to " k ' = ..."
in the equation, replace " $v(T)-$ " with " $v(T)=$ ".
"Kinchin" is misspelled.
remove the last two lines of the problem, starting with "Use...".

Chapter 3

126 line 4 below Eq. (3.5)
129 last line and p 130 first line to the period.

130 Eq. (3.13)
130 Last line before Section 3.3
132 Figure 3.7
132 first line below Eq. (3.20)
$133 \quad 2^{\text {nd }}$ line
133 Eq. (3.23)
134 line 12 from top of page
144 Eq. (3.24)
149 line 10 from top of page
150 line 1 from top of page
152 Nomenclature

Chapter 4

156 Figure 4.2 caption
156 Figure 4.4 caption
156 Figure 4.6 caption
160 Table 4.1

164 first line
164 Eq. (4.7)
165 Eq. (4.14)
166 Example 4.1 a)
167 Eq. (4.20)
167 Eq (4.20)
170 line 7
171 pph 2, line 1
173 Eq. (4.30)
175 Eq. (4.46)
175 line above Eq. (4.47)
175 two lines above Eq. (4.49)
176 last line
177 eqn for N_{v} in section 2
Eq. before Eq. (4.55)
Eq. (4.55)
Eq. (4.57)
Eq. (4.61)
change content in parentheses to "($\lambda \sim 0.2 \mathrm{~nm})$ "
change to "of greatest importance, rather it is the number of recoils weighted by the damage energy produced in each recoil that is most important."
Lower integration limit should be " E_{d} ".
Remove "a" after "of" and before "creating"
change " ε " to " ξ " in four places in figure.
"Boltzmann's" is misspelled.
change "cascade" to "damage".
term in brackets is raised to the $2 / 3$ power.
change "MARLOW" to "MARLOWE"
ζ should be " ζ_{i} " and " ζ_{v} ", respectively.
" v_{NRT} " should be " v_{NRT} "
change " $\mathrm{Fe}-\mathrm{Cu}$ " to " $\mathrm{Fe}-\mathrm{Cr}$ ".
Add " $\mathrm{R}^{2} \quad$ variance in temperature profile, Eq. (3.21
Remove " $\Theta \quad$ cascade energy density".
label left drawing " a " and right drawing " b ".
label left drawing " a " and right drawing " b ".
label left drawing " a " and right drawing " b ".
remove asterisk in definition of equilibrium vacancy concentration.
Add as footnote to table "*estimated by assuming $S_{i}^{f}=8 \mathrm{k}$ ". change "at finite a temperature" to "at a finite temperature". insert " k " in front of the term in brackets.j
denominator in last term on the right should be " $k T$ ".
change equation references to "Eqs. (4.15) and (4.16)".
replace γ with σ in second term.
remove " 2 " outside the brackets in the second line of the Eq.
change to "species".
change to "mechanisms".
remove period in front of " λ_{3} ".
change $1 / 6$ to $\frac{1}{6}$.
change $1 / 6$ to $\frac{1}{6}$.
remove " "" after "cases".
change " N_{m} " to " n_{m} ".
insert negative sign into last term: " $\exp \left(\frac{-E_{f}^{v}}{k T}\right)$ ".
Replace " N_{V} " with " N_{v} ".
in first term after equality, change " S_{v}^{m}, to " S_{m}^{v} ".
remove " + " sign in second term.
remove "and".

179 first line in example box
179 Table 4.2 second from last line, column D
183 Eq. (4.69)
Nomenclature
problem 4.7
change " 3 nm " to " 0.3 nm ".
change entry to " $1 / 6 \mathrm{a}^{2} \omega$ ".
Replace with " $\tilde{D}=D_{A} N_{B}+D_{B} N_{A}$ ".
Add " κ_{T} thermal conductivity".
line 1: Change "diffusivity of" to "diffusion coefficients for". line 4: Change "diffusivity of" to "diffusion coefficients for". last line: remove "Take $\gamma=1$ ".

Chapter 5

202 third line above Eq. (5.37)
20311 lines from bottom of page

214 line above Eq. (5.76)
215 line below Eq. (5.79)
215 Eq. (5.83)
215 Eq. (5.83)
218 first line below Eq. (5.101)
218 line above Eq. (5.102)
218 Eq. (5.102)
220 Eq. (5.115)
221 Table 5.2
$K_{\mathrm{v} g b}=4 \pi D_{\mathrm{v}} d \quad K_{i g b}=4 \pi D_{i} d$
$K_{\mathrm{v} g b}=\pi k D_{v} d^{2} \quad K_{i g b}=\pi k D_{i} d^{2}$
225 problem 5.9
226 Problem 5.14a
change " α " to " α " in two places.
change "The thin solid lines are the interstitial and vacancy concentrations and the thick solid line is the their sum as calculated from Eq. (5.35)" to "The thin solid lines are the interstitial and vacancy components and the thick solid line is their sum as calculated from Eq. (5.39)" "heavy lines" - need to redraw curve.
the value of ρ_{d} should be " 10 " ".
in denominator, change " $K_{i v}$ " to " $K_{i s}$ ".
last term is $K_{v s}{ }_{v}=4 \pi r_{v s}$.
remove subscript from " ω ".
change to "Using Eq. (5.74) gives:"
replace "Eq. (5.56)" with "Eq. (5.77)".
Change term after the equality to " 0 ".
value on RHS should be changed from " 1 " to " 0 ".
change "divided" to "multiplied".
remove " a / cm^{2} ".
replace " z_{d} / D " with " z_{d} ".
Insert " D_{v} " to LHS of Eq. and " D_{i} " to RHS of Eq.
Rate constants for "v,i + grain boundary, Diffusional control" should be:
$K_{v g b}=4 \pi D_{\nu} d \quad K_{i g b}=4 \pi D_{i} d$
$K_{v g b}=\pi k D_{\vee} d^{2} \quad K_{i g b}=\pi k D_{i} d^{2}$

Need to add this to revised text - hard to do in table.
in definition for " z_{d} ", change "divided" to "multiplied". add " $\rho_{d}=10^{10} \mathrm{~cm}^{-2}$ " below the definition of " $r_{i d}$ ". should read "interstitial annihilation"

Chapter 6

Eq. (6.7)
3 lines from bottom of page line 6 in Example 6.1

Change " N_{v} " to " N_{A} ".
add period after "Eq. 6.6)".
Change " $E_{m}^{B v}$ " to " $E_{m}^{B i}$ ".
line 2 above Eq. in Example 6.2 Change " $E_{m}^{A i}=0.9 \mathrm{eV}^{\prime}$ " to " $E_{m}^{A i}=0.09 \mathrm{eV}$ ".

Eq. in Example 6.2
line after Eq. (6.29)
Eq. (6.39)
2 lines above Eq. (6.44)
Eq. (6.47c)

Fig. 12 caption
Eq. (6.57)
Eq. (6.58)
lines 3 and 4

The middle term in the exponent should be " $E_{m}^{A i}$ ".
Change "Eq. (6.25) to Eq. (6.28)".
In Eq. for JC, change the second term to the right of the equality to " $d_{C v} \Omega C_{C} \Delta C_{v}$ ".
change "exchnge" to "exchange".
change third term in square brackets to " $\frac{C_{F e}}{2} E_{N i N i}$ ".
change last term in square brackets to " $C_{v} E_{N i-v}$ ".
Reference should b "(after [12])".
change " K_{v} " in last term to " $K_{v s \text { ". }}$
change " K_{i} " in last term to " $K_{i s}$ ".
Change "...determining in the..." to "...in determining the...".

Chapter 7

Figure 7.4

Eq. (7.2)
Eq. (7.4)
line eleven from top
Figure 7.17
Figure 7.20
Eq. (7.15)

Eq. (7.29)
line 8 below Eq. (7.32b)
4 lines above sec. 7.1.6
Eq. 7.47 and below
section 7.19,
$6^{\text {th }}$ line from bottom
second pph, line 5
$5^{\text {th }}$ line from bottom
line above Eq. (7.60)

Eq. (7.60)
line \# 7 from the bottom
Fig. 7.59a
line below Eq. (7.137)
problem 7.8, lines 2 and 3
change "pure screw character at point A" to "pure edge character at point A" and "pure edge character at point B" to "pure screw character at point B".
Should use proportional symbol " \propto ".
Should use proportional symbol " \propto ".
Change "plan" to "plane".
Directions are all backward. Fix figure.
Arrow below " θ " in figure should go in opposite direction.
Last equality for $\sigma_{x x}, \sigma_{y y}$, and $\sigma_{x y}$ should have a " 2 " in the denominator.
First equality for σ_{xx} should have a "-" sign, and the last equality should not have a " 2 ".
insert " 2 " before the term on the LHS of the Eq.
Change "Eq. (7.32b)" to "Eq. (7.32a)".
change "Frank-Reed" to "Frank-Read".
change $\sigma_{x z}$ and $\sigma_{y z}$ to $\sigma_{z x}$ and $\sigma_{z y}$.
change "job" to "jog".
change "line" to "lie".
remove "in" after "into".
add ", n_{v} " after "number of vacancies".
change " n " to " n " in:
line below Eq. (7.61)
change " E_{S} " to " E_{V} ".
replace "... there is considerable uncertainly regarding ..." by
"... there is considerable uncertainty regarding ..."
change " 3600 " to " 600 " in abscissa label.
change " ρ_{n} " to " ρ_{N} ".
change "the x -axis to be in the plane of the loop" to "the z -axis to be in the plane of the loop".

Chapter 8

line 5 after Eq. (8.3)
line above Eq. (8.10)
line below Eq. (8.16)
Fig. 8.2
third line below Eq. (8.21)
Fig. 8.4 caption
Eq. (8.25)
line below Eq. (8.26)
first line below Eq. (8.36)
first line below Eq. (8.34)
Eq. (8.40)
line 5
Fig. 8.11
Eq. (8.61)
line below Eq. (8.79)
Eq. for C_{0}, above Eq. (8.80)
Eq. (8.87)
line below Eeq. *8.87)
Eq. (8.88)
line 2 below Eq. (8.91)
Eq. (8.108) line 3 of Eq.
Eq. (8.115)
line below Eq. (8.115)
Eq. (8.116)

Eq. (8.126)
line below Eq. (8.126)
Eq. (8.127)
Eq. (8.130)
line above Eq (8.134)
Eq. (8.135)
line 13 in sec. 8.3.1
$4^{\text {th }}$ line from bottom
Eq. (8.148)
pph 2, line 3
pph 2, line 10
Fig. 8.21

Replace "removing" with "placing" and replace "from" with "in".
remove "and".
move " $\Delta G_{n}^{0 \text { " }}$ up to the preceding line just after "for".
label on bottom curve should be " $\alpha-\mathrm{n}$ ".
change " $\beta_{v}(n+1)$ " to " $\beta_{i}(n+1)$ " and add "vacancy" before "loss".
Remove "of" in line 2.
" $\beta_{i}(n)$ " in denominator of second term in middle equality should be " $\beta_{i}(n)$ ".
change " $\beta_{i}(n)$ " to " $\beta_{i}(n)$ ". Should be $\beta_{v}(n)$?
change "were" to "where". change "Fig. 8.2" to "Fig. 8.3".
replace " 36 " with " 32 ".
change "as" to "an" to read "....just an extension..."
replace " $\beta_{i} \beta_{v}$ " in figure with " β_{i} / β_{v} '.
indentation should be same as for Eq. (8.62)
change "Table 5.1" to "Table 5.2".
insert minus sign in exponent for " H_{f} ".
change all " d " sub- and super-scripts to " N "
change "Table 5.1" to "Table 5.2".
change all " d " sub- and super-scripts to " N ".
replace "Eqs. (8.91) and (8.92)" with "Eqs. (8.90) and (8.91)".
in last term, change " $D_{v} C_{v}$ " to " $D_{i} C_{i}$ ".

$$
\begin{aligned}
& \text { Correct Eqs. are: } C_{v}=\frac{-K_{i s} C_{s}}{2 K_{i v}}+\left[\frac{K_{0} K_{i s}}{K_{i v} K_{v s}}+\frac{K_{i s}^{2} C_{s}^{2}}{4 K_{i v}}\right]^{1 / 2} \\
& C_{i}=\frac{-K_{v s} C_{s}}{2 K_{i v}}+\left[\frac{K_{0} K_{v s}}{K_{i v} K_{i s}}+\frac{K_{v s}^{2} C_{s}^{2}}{4 K_{i v}}\right]^{1 / 2},
\end{aligned}
$$

change "Table 5.1" to "Table 5.2".
Correct Eqs. are: $C_{v}=\frac{-k_{i}^{2} D_{i}}{2 K_{i v}}+\left[\frac{K_{0} k_{i}^{2} D_{i}}{K_{i v} k_{v}^{2} D_{v}}+\frac{\left(k_{i}^{2}\right)^{2} D_{i}^{2}}{4 K_{i v}}\right]^{1 / 2}$

$$
C_{i}=\frac{-k_{v}^{2} D_{v}}{2 K_{i v}}+\left[\frac{K_{0} k_{v}^{2} D_{v}}{K_{i v} k_{i}^{2} D_{i}}+\frac{\left(k_{v}^{2}\right)^{2} D_{v}^{2}}{4 K_{i v}}\right]^{1 / 2} .
$$

change " D " to " d ".
change "Eq. (5.57)" to "Eq. (5.58)".
in denominator, change " D_{i} " to " a^{2} ".
in denominator, change " ρ_{D} " to " ρ_{d} ".
in denominator in first term after equality, change " p_{d} " to " ρ_{d} ".
insert "all but the first" after "in".
change " A " to " Θ " in very last term.
change " F ' (η) to $F(\eta)$ ". s
change RHS of inequality from " $\frac{z_{v}}{z_{i}}$ " to " $\frac{z_{i}}{z_{v}}$ ".
Change " ρ_{v} " to " ρ_{V} ".
change " $Q<1$ " to " $Q>1$ ".
change " $Q>1$ " to " $Q<1$ ".
label on ordinate should be " $Q /(1+Q)^{2 "}$. Value should be " 0.25 ".

Fig. 8.22
line 2
line below Eq. (8.169)
Fig 8.32 caption.
Eq. (8.176)
Fig. 8.48b
line 2 above Eq. (8.204)

2 lines below Eq. (8.206)
line 2 after Eq. (8.211)
header at top of page
line 2 below Eq. (8.228)

Nomenclature
problem 8.4
problem 8.5
problem 8.7
problem 8.12

Chapter 9

438
438

Eq. (9.9)
Eq. (9.10)
after Eq. (9.16)
Eq. (9.17)
Eq. (9.25)
Eq. (9.27)
two lines below Eq. (9.27)
Fig. 9.8
line above Eq. (9.28)
Eq. (9.29)
Eq. (9.31)
line 4 in section 9.3
line 5 in section 9.3
Eq. (9.33)
first line
line below Eq. (9.37)
units on label on ordinate should be "(\%/dpa)".
change "terms" to "term".
replace "Eq. (8.165)" with "Eq. (8.168)".
Value for ρ_{d} should be same as in graph
after equality sign, change " σ_{n} " to " σ_{h} ".
see revision to legend.
change "substituting in from Eq. (8.194) for p gives" to
"substituting for p from Eq. (8.194) to give".
change "Eqs. (8.201) and (8.205)" to "Eqs. (8.195) and (8.205)".
add a space after " C_{v} ".
change to read " 8.5 Bubble Growth".
change to "the thermal neutron cross-section for the reactions in
Eq. (8.228) are 4.6 b and 12.3 b , respectively."
Add " $z_{i v} \quad$ combinatorial factor for vacancyinterstitialrecombination".
Add " $\Sigma_{s} \quad$ macroscopic neutron scattering cross section"
Add " $\gamma_{S F E}$ stacking fault energy"
change " \dot{R} / R_{0} " to " \dot{R} / \dot{R}_{0} ".
change " $v=100$ displacements/neutron" to
"\# displacements/neutron = 100".
change " Z_{i} " and " Z_{v} " to " z_{i} " and " z_{v} ".
in Eq. for " D_{v} ", change " a_{0}^{2} " to " a^{2} ".
Eq. for " $C_{v}=$ " should read " $C_{v}{ }^{0}=$ ",
change " C_{r} " to " C_{v} ".
change " $\sigma / \gamma_{N i}<\sigma / \gamma_{F e}$ " to " $\gamma /\left.\gamma_{S F E}\right|_{N I}<\gamma /\left.\gamma_{S F E}\right|_{F e}$ ".
change " $=2 "$ to " $=\sqrt{2} "$.
remove parenthesis ")" to the right of the $r_{p}{ }^{3}$ term in denominator of the first term after the equality sign.
change " $C e$ " to " C_{e} ". - No error here.
insert "where " C_{0} is the initial solute concentration" before "and the maximum..."
the term " $\left(L-r_{p}{ }^{2}\right)$ " in the denominator should be " $\left(L-r_{p}\right)$ ".
Change " D_{v} " to " D_{i} " and " r_{v} " to " $r_{i v}$ ".
Change " D_{v} " to " D_{i} " and " r_{v} " to " $r_{i v}$ ".
after " $=K_{0} / N$ " add, ", where N is the atom number density, and".
Axis labeled "ln G " should be "In K_{0} ".
Change "between Eqs. (9.21 and (9.26)" to "between Eqs. (9.23
and (9.26)".
Change " D_{v} " to " D_{i} " and " r_{v} " to " $r_{i v}$ ".
Change " D_{v} " to " D_{i} " and " r_{v} " to " $r_{i v}$ ".
change "thickness, l " to "thickness, l, ".
change "fraction, f " to "fraction, f ".
change " $d r / d t$ " to " $d r_{p} / d t$ ".
change "by" to "be".
add "," after " K_{w} ".

Fig. 9.11b caption
second line below Fig. 9.13
two lines before Eq. (9.51)
Eq. (9.5)
Eq. (9.59)
line 1 after Eq. (9.59)
line before Fig. 9.15
line 4
pph 2, line 5
Fig. 9.17 caption
line 7
$3^{\text {rd }}$ line from bottom of page
Fig. 9.23 b
Eq. (9.74)
Eq. (9.78)
last bullet
line 1

Eq. (9.81)
Fig. 9.32
problem 9.3
change "a phase" to " α phase".
Change "the γ ' phase $\left(\mathrm{L1}_{2}\right), \mathrm{NiAl}_{3}$," to "the NiAl_{3} phase $\left(\mathrm{D} 0_{11}\right)$ ". remove "into" that appears after "Substituting...". second term on RHS of equality - raise x to $2 / 3$ power replace Eq. (9.59) with
$\Delta \phi=-k T \ln \left[S_{x}\left[S_{v}\left(1-\beta_{i} / \beta_{v}\right)\right]^{\delta}\right]-\frac{k T}{4 B}\left[\ln \left(S_{v}\left(1-\beta_{i} / \beta_{v}\right)\right)\right]^{2}$
first word should be flush to LH margin.
Change "increase" to "decrease" and "emission" to "capture and " $<$ " to " $>$ ".
remove "with".
change "tout" to "out".
in part (a), change " $23^{\circ} \mathrm{C}$ " to " $27^{\circ} \mathrm{C}$ ". In part (b), change " $123^{\circ} \mathrm{C}$ " to " $127^{\circ} \mathrm{C}$ ".
add "," after "Fig. 9.21a".
Change " $\left\langle\delta_{v i b}^{2}\right\rangle$ " to " $\left\langle\delta_{\text {stat }}^{2}\right\rangle$ ".
Change " α " to " γ "" in two places in figure.
Change " $\theta_{0}{ }^{2 "}$ " to " $\theta_{d}{ }^{2}$ ".
Change " $k T$ " in second term to the right of the equality to " $k T_{c}$ ".
Change "dose-dependent" to "temperature-dependent".
replace " 9.75 " with " 9.76 ".
change " $\Delta G_{a c}$ " to " $\Delta G_{c a}$ ".
change " $\Delta G_{a c}$ " to " $\Delta G_{c a}$ ".
third word of label on the ordinate should be "material".
Include " $E=200 \mathrm{MPa}$ and $\boldsymbol{v}=0.3$ "

Chapter 10

514 line below Eq. (10.57)
515 line 1
521 Fig. 10.18
528 line 8 above sec. 10.3.3
528 line 7 from bottom of page
change "Eq. (10.56)" to "Eq. (10.57)".
remove "of".
Change label \#7 to "PS+RED+RIS+GA+DM".
change" $\rangle 110\langle$ " to " $\langle 110\rangle$ ".
replace " 68 " with " 110 ".

Chapter 11

5497 lines from the top of page
549 Eq. (11.4b)
549 line 1 after Eq. (11.4b)
551 Table 11.1
554 line after Eq. (11.6)
569 line 2 from bottom of page
570

Fig. 11.20 caption

Remove "a" after "of" and before "creating" Denominator should be " T "" (T hat).
no indentation of paragraph.
First damage rate for neutrons should read 1×10^{-8}
eliminate one "ratio of".
remove "." after "irradiations".
should read "Comparison of hardening in commercial purity 304 (a) and 316 (b) stainless steel irradiated with neutrons or protons to similar doses (from [21])

Chapter 12

583 table at top

610 Eq. (12.102)
610 line below Eq. (12.103)
613 line 10 below Eq. (12.107)
$614 \quad 7^{\text {th }}$ line below Eq. (12.108)
615: replace $\left(\phi t^{1 / 2}\right)$ by $(\phi t)^{1 / 2}$
615: after equation (12.110) replace reference to Eq. (12.106) by (12.110)
615 line \#4 from the bottom remove "due"
616 Eq, (12.112)
615 last line
618 Figure 12.16
Eq. (12.3)
line after Eq. (12.13)
Eq. (12.45)
Eq. (12.61)
second line below Eq. (12.62)
Eq. (12.63)
Eq. (12.65), line after
Eq. (12.66)
Eq. (12.68)
line below Eq. (12.72)
Eq. (12.75)
line after Eq. (12.77) ${ }^{`}$
Eq. reference should be to "Eq. (12.76)".
line \#7 from the bottom: "... 10 K and a under ...". Remove " a ".
second line in section on "Loops"
replace ϕ by ϕt or by Φ
add "dpa-1" after "B ~ 0.5 ".
Both, Y -axis and X -axis labels are exactly the same
expression for " $\varepsilon_{z z}$ " at stress " $\sigma_{y y}$ " should be " $\varepsilon_{z z}=\frac{-v \sigma_{y y}}{E}$ ". although one is referring to calculations and the other to measurements according to the caption. The labels should be modified.
third line from bottom of page change "prodced" to "produced".
Figure 12.19
Eq. (12.127)
Eq. (12.128)
Eq. (12.129)
caption in Fig. 12.25
problem 12.2, first line
problem 12.4, last line
$7^{\text {th }}$ text line of problem 12.5 problem 12.5
in both (a) and (b), replace the X -axis label Φt by ϕt $\left(\Delta \sigma_{y}=3.03 \mathrm{H}_{\mathrm{v}}\right)$ should be the same expression than the expression in Fig. 12.22(a) $\left(\Delta \sigma_{y}=3.03 \Delta H_{v}\right)$
$\left(\Delta \sigma_{y}=3.06 \mathrm{H}_{\mathrm{v}}\right)$ should be the same expression than the \backslash expression in Fig. 12.22(b) $\left(\Delta \sigma_{\mathrm{y}}=3.06 \Delta \mathrm{H}_{\mathrm{v}}\right)$
second equation should read $\Delta \sigma_{y}=2.13 \Delta H_{v}+155, \Delta H_{v}>100$ $\mathrm{kg} / \mathrm{mm}^{2}$
include "(d)" before Tanigawa.
replace $\mathrm{Fe} 18 \mathrm{Cr}-12 \mathrm{Ni}$ by $\mathrm{Fe}-18 \mathrm{Cr}-12 \mathrm{Ni}$
change to "the radius of a constant density of voids".
change reference to "Problem 12.3".
"... friction stress σ_{1}) ..." should be \forall friction stress $\left.\sigma_{i}\right)$..."
in Eq. for $\sigma_{i}, 5^{\text {th }}$ line from the bottom of the page, change " v " to "V".

Chapter 13

644	Eq. (13.1)	denominator in argument for "sin" term should be " λ ".
646	Eq. (13.11a)	remove subscript on " γ ".

Chapter 14

711 line \#5 after Eq. (14.2) "An elastic strain ..." should read "Anelastic strain ..."
711 line \#8 from the bottom "Due the ..." should read "Due to the"
721
723 first line after Eq. (14.44) $\begin{aligned} & \text { the expression "Note that the stress dependence } \ldots . \text { " is not } \\ & \text { correct and should be reworded as "Note that the stress }\end{aligned}$ power/exponent in this model is ..."
first line after Eq. (14.51) rewrite " $\sigma \Omega \mathrm{kT}$ " as " $\sigma \Omega / \mathrm{kT}$ "
second line Eq. (14.52) rewrite "... square of the grain size." as "... square of the grain diameter."
first line after Eq. (14.92) rewrite "... $\Delta z_{i}{ }^{d}$ is ..." as "... $\Delta z_{i}{ }^{d}$ is ..." (insert space) line \#3
problem 14.4, line 2
line \#5
problem 14.4

Index

rewrite " $\ldots=z_{i}{ }^{d}$." as " $\ldots=z_{i}^{d}$." (remove space between \backslash " z_{i}^{d} " and the period)
rewrite "... and as given ..." as "... and is given ..." the quantity $\mathrm{Q}_{\mathrm{i}}{ }^{\mathrm{V}}$ is define twice: once as 0.66 eV and then 0.12 eV . But one should be replaced by $\mathrm{Q}_{\mathrm{f}}{ }^{i}$ and the other by $\mathrm{Q}_{\mathrm{m}}{ }^{\mathrm{i}}$. change "where J_{i}^{d} is the flux of interstitials to", to "where J_{k}^{d} is the flux of defect k to"
change " 371 " to " 370 ".

